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ABSTRACT   

Stereoscopic vision modules have seen limited success in both engineering and consumer world, due to the required 

additional hardware (image acquisition, Virtual Reality headsets, 3D glasses). In the last years, especially the gaming and 

education sectors have benefited from such specialized headgear, providing virtual or augmented reality. However, many 

other industrial and biomedical applications such as e.g. computer aided design (CAD) or tomographic data display, so far 

have not fully exploited the increased 3D rendering capabilities of present-day computer hardware.  

We present an approach to use standard desktop PC hardware (monitor and webcam) to display user-position aware 

projections of 3D data without additional headgear. The user position is detected from webcam images, and the rendered 

3D data (i.e. the view) is adjusted to match the corresponding user position, resulting in a quasi virtual reality rendering, 

albeit without the 3D effect of proper 3D head-gear. The approach has many applications from medical imaging, to 

construction and CAD, to architecture, to exhibitions, arts and performances. 

Depending on the user location, i.e. the detected head position, the data is rendered differently to attribute for the user 

view angle (zoom) and direction. As the user moves his or her head in front of the monitor, different features of the rendered 

object become visible. As the user moves closer to the screen, the view angle of the rendered data is decreased, resulting 

in a zoomed-in version of the rendered object.  
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1. INTRODUCTION  

Many vision applications today rely on the rendering of 3D data. Although modern computer hardware permits the 

rendering of such 3D data in a virtual reality (VR) or an augmented reality (AR) environment1, such hardware is often 

provided in the form of a head gear, such as specialized glasses or position indicators2. Today, the presence of such VR or 

AR glasses is still limited. To a large degree this is because the glasses themselves are not suitable (because of a dirty, 

harsh, or wet environment unsuitable for electronic equipment), not available (because they are expensive), or not accepted 

(because they are uncomfortable or even potentially dangerous3). For example, it could be shown that the use of some VR 

headgear lead to a temporary loss of binocular vision4,5. In addition, the rendering needs to be fast in order to allow for a 

realistic movement of the object and for a smooth transition when updating the view and/or the zoom. Other real-time 

adapted rendering techniques often make use of a two pass algorithm; first coarsely estimate the viewing direction in the 

first pass, and search for a better match in the neighborhood of the previously found positions in the second pass6. However, 

such approaches can be computationally complex and thus time consuming. In our approach, we present a single pass user 

position extraction and subsequent rendering algorithm. 

As another alternative to Virtual Reality, so-called “immersive” displays have been employed to present the user with 

3D rendering of data7. However, also this approach suffers from some drawback: For example, it could be shown that the 

design of the data presentation (2D or 3D) may have more impact than the performance of the 3D rendering system can 

potentially compensate.8 If “immersion” is a requirement for the application, it is important to take both task analysis and 

engineering requirements into consideration in order to formulate specifications for the display systems, as well as to 

understand the engineering tradeoffs and human factors issues involved.9 

Fast rendering of 3D datasets is especially useful in the context of computer aided design (CAD). The design cycle of 

a CAD developed device has two main phases. During the initial design of the instrument, a precise but static 3D model 

of the various components is developed. Then comes the test phase of the integrated system, which is integrated in modern 

CAD software, making use of scientific methods and experiments. Many devices have moving parts, which are partially 
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hidden behind other components or housing parts. All of these parts can lead to collisions during operation, limit the travel 

range or otherwise cause failures. To avoid accidents resulting from interactions of parts, the movements of the instrument 

parts during operation must be carefully tested in a pre-experiment phase, which allows us to detect possible interference. 

As it can sometimes be difficult to foresee all of the possible configurations of a multi-part CAD constructed device, 

especially when the device itself is to be embedded in a larger system, it is sometimes advisable to have a human supervised 

virtual test phase of the device. This is one possible application of our approach for user-position aware fast 3D rendering. 

Several goals were realized in this project: A viewer application was designed and realized for fast rendering of 3D 

datasets. The viewer application was implemented in Matlab (The Mathworks Inc., Natick, MA). In order to test the 

suitability of our approach in a realistic, real-time rendering application, a variety of different 3D models were used. An 

interface was provided to integrate and load custom 3D datasets. One goal of the project was to adapt available 3D models 

(3D datasets) and to convert these models into a format that will be loaded and animated in the dedicated viewer 

application. In addition, webcam control is added to the viewer application, and linked to the rendering engine. The 

interface between the extracted user position information and the 3D rendering part provides access to the view angle 

(zoom) and direction.  

After the implementation phase the approach was tested for performance. 3D datasets (meshes) with varying number 

of triangles were used to estimate the impact of the size of the dataset on the performance. Likewise, camera settings and 

settings of the Viola Jones face detection algorithm10 used for the extraction of the user head position were tested with 

respect to their impact on the performance of the VR rendering. 

2. PRINCIPLE 

Figure 1 shows an example of a rendered 3D object used during the performance tests. The 3D object shown is the 

surface of the moon. This dataset was made available from NASA11, and is the biggest dataset used in our tests. The 3D 

dataset underlying this object consists of 750 000 vertices, i.e. 250 000 individual surface patches. For realistic setting, one 

or more light sources are added to the rendering process, in order to provide shadows, and give highlight to surface 

structures as indicated in Figure 1.  

 

Figure 1.  3D rendering of a CAD model of the lunar surface11. 

 

Figure 2 illustrates the operation principle of our approach, which is straightforward: 1) From webcam images, the 

head position (red line) and the head size (blue square) of a single user is extracted and tracked. 2) From the head position 

data, the tilt angle (viewing direction or camera position) of the rendered data is adjusted. 3) From the head size, the 



 

 
 

 

distance between the user and the screen is estimated; this estimate is used to adjust the view angle (camera zoom) of the 

rendered data, effectively changing the field of view presented to the user. When the user moves in front of the webcam, 

different parts of the object are revealed on the screen corresponding to the different viewing directions of the user. 

 

 

Figure 2.  Principle of the user-position aware 3D rendering. Depending on the detected user head position, the rendering is adjusted to 

attribute for the user view direction and field of view (zoom). As the user moves to the left or right, different features of the rendered 

object become visible. As the user moves closer to the screen, the view angle decreases, resulting in a zoomed-in version of the 

rendered object (see below). Image parts: Wiki commons. 

In our every-day experience, as we move closer to an object, the extent of the scene which we observe appears to be 

decreased and the object appears larger. In the viewer application, this experience is mimicked by zooming into the object. 

For a 3D dataset, this is implemented by decreasing the camera view angle in the Matlab viewer application. Figure 3 

illustrates the operation principle of this approach. In this screenshot of the rendered 3D model of a car (shown in Figure 

2), the object is zoomed in, detailing on the right rear lights. 

 

Figure 3.  Close up view of the right rear lights of the rendered car. 

 

 

3. IMPLEMENTATION 

The viewer application is implemented using Matlab 2017a. Performance tests are carried out on a dual-core (2 x 2.6 

GHz) Windows PC (Intel i5-7300U) with hardware accelerated rendering supported by the processor graphics card (Intel 

HD Graphics 620). The camera exposure time is fixed to 2–9 s in order to avoid variability of the performance due to 

changes in the lighting conditions. Likewise the automatic white balance of the webcam is switched off, in order to optimize 

performance of the Viola Jones feature extraction algorithm used to detect the user’s face in the webcam image.  



 

 
 

 

The face detection is implemented as Haar feature-based cascade classifiers, using the OpenCV face detection training 

set12. From the resulting bounding box around the face feature, the center is extracted and treated as the value of the head 

position. The area of the bounding box is treated as the size of the head. Intrinsic variations of the face detection process 

lead to fluctuations of the detected bounding box size, although without significant effect on the center of the bounding 

box. An infinite impulse response (IIR) filter with filter fraction ¼ is used to attenuate these fluctuations. The filter fraction 

is a compromise between amplitude attenuation and system response time. 

In a first “learning” stage, the user head rest position (center) and size (boundaries) are extracted from 100 webcam 

images (no object displayed). This phase essentially calibrates for the typical working position of the user for a given PC 

system. This step needs to be performed only once, as the rest position and size data can be stored for later use of the same 

setup. It was tested whether this initial calibration data can be used for another person (see results). 

After these initial steps for calibration of the webcam, the 3D dataset is loaded into memory13 and displayed on the 

computer screen. The mesh triangles are rendered and visualized using the standard Matlab 3D drawing command “patch”. 

Corresponding spectral absoprtion and light reflectance properties are added to the resulting 3D surface. Control of the 

webcam is added to Matlab using the MATLAB Support Package for USB Webcams.  

The webcam is used to continuously acquire images, extract the head position from the webcam images, and adjust the 

rendering of the 3D dataset corresponding to the position of the user – and thus to the view direction and proximity – in 

front of the screen. Performance tests are done on 200 images per test settings in order to estimate the frame rate of the 

system. In some instances, the face can not be properly detected due a number of reasons such as blending of the face 

boundaries with the background, light reflections from the face surface, etc. As the algorithm continuously tries to find the 

face in the image, a noticeable dead time with a drastic drop in video frame rate can be observed. This is perceived as an 

unacceptable slow response of the viewer application. In order to test and further evaluate this behavior, we included for 

each of the settings, a test phase, during which faces are effectively hidden from detection by shielding parts of the face14,15. 

4. RESULTS 

The results of the performance tests for the large 3D dataset using a mesh with 750 000 vertices are shown in Table 1, 

which summarizes the computation times for four different settings of the algorithm, i.e. two different webcam image 

resolution settings (small: 160x120pix, medium: 640x480pix) and two different settings of the Viola Jones algorithms 

(unconstrained face search or specification of a minimum face size). In the columns, the computation times for the 

individual parts of the algorithm (acquisition and haar feature detection, extraction of the user position and proximity, 

adapted rendering of the 3D dataset) are given. The overall computation time is typically below 40 ms for one complete 

loop of the algorithm including webcam data acquisition, image processing, and 3D rendering. This corresponds to a video 

rate of ca. 25 fps, which is fast enough for realistic rendering and smooth transitions. As a compromise between image 

acquisition speed and contrast-to-noise ratio16, the webcam is operated at a fixed exposure time of 2–9 s. 

 

Table 1. Computation and visualization time for a large 3D dataset (750 000 vertices) for different settings 

settings acquisition and detection (ms) extraction (ms) rendering (ms) 
 face detection face not detected position translation  zoom 
      

160x120 pix 
unconstrained  

31.9±7.5 33.2±7.7 0.05±0.01 2.5±1.0 0.3±0.1 

160 x 120 
min face size 

30.0±7.7 34.0±9.8 0.06±0.05 3.0±1.5 0.3±0.2 

640 x 480  
unconstrained 

360±51 345±33 0.1±0.1 3.4±2.0 0.3±0.2 

640 x 480  
min face size 

39.4±6.9 33.6±10.0 0.08±0.08 6.2±2.7 0.5±0.4 

 

Similar to the results above, Table 2 shows a summary of the viewer application performance when displaying a rather 

compact 3D dataset (with mesh size of 1 500 vertices). These results indicate that the effect on the overall performance 

does not largely depend on the size of the rendered dataset. 

  



 

 
 

 

Table 2. Computation and visualization time for a rather compact 3D dataset (1 500 vertices) for different settings 

settings acquisition and detection (ms) extraction (ms) rendering (ms) 
 face detection face not detected position translation  zoom 
      

160x120 pix 
unconstrained  

 31.5±6.8  33.1±7.8 0.06±0.03 3.8±2.2 0.4±0.3 

160 x 120 
min face size 

 31.1±7.9  34.1±8.5 0.05±0.01 2.7±1.2 0.3±0.1 

640 x 480  
unconstrained 

 360±33 341±38 0.52±0.15 3.3±1.6 0.3±0.2 

640 x 480  
min face size 

 32.2±5.7  33.4±10.0 0.1±0.1 5.0±1.6 0.5±0.4 

 

Further tests include the use of calibration data (initial measurement of rest position and size of the user head) for use 

of the viewer application by another person. Users reported no significant differences when using either their own 

calibration set or that of a different user (data not shown). In addition, the operating distances were evaluated, i.e. the 

minimum and maximum distance between the user and the webcam. The minimum distance between user and webcam are 

given in Table 3. In our settings, the webcam was always mounted centrally on top of the computer monitor. 

 

Table 3. Operating distances between user and webcam 

settings distance (cm) 
webcam minimum maximum 

   

Microsoft LifeCam VX-2000  22 95 

Microsoft LifeCam Studio 45 115 

Integrated Webcam 33 90 

 

The minimum operating distance of approximately 22 cm was obtained when using the Microsoft LifeCam Studio. If 

the operator moves closer, the standard face detection algorithm applied is no longer able to detect the face from the 

acquired image. In contrast, the maximum distance was found to be approximately 115 cm when using the Microscoft 

LifeCam VX-2000. All values are compatible for the values recommended for the operating distance between user and 

monitor, which are typically in the range between 50 and 80 cm.17,18 This allows for comfortable use of the software, as 

the user does not need to change his/her routine layout of the computer hardware. 

5. DISCUSSION 

In this work we have proposed and implemented a robust adaptation approach for the VR rendering of 3D image data. 

In contrast to conventional approaches for user-position aware display of 3D datasets, which rely e.g. on stereo vision 

glasses, our approach does not require any additional hardware except for a simple webcam. In principle, our approach is 

scalable to make use of multiple camera modules and multiple monitors, so that a much larger range for the angle of view 

is possible. Presently, using a single webcam, the range for the tilt angle is limited to roughly ±20°. This limit can be 

overcome by rotating the rendered object by a multitude of the real angle of direction, such that the object is e.g. rotated 

by twice the angle corresponding to the displacement of the user head in the webcam image, although this type of rendering 

gives a much less realistic impression. In the current implementation, the adjustment of the viewing direction (for the 

horizontal and lateral offset) shows a greater accuracy than the adjustment of the viewing angle (zoom). The associated 

fluctuations in magnification were largely mitigated by the use of an infinite impulse response (IIR). However, as a 

consequence the response of the zoom as the user moves closer to the screen exhibits a noticeable lag time by reducing the 

corresponding update rate for the zoom value to about 6-7 fps (while maintaining a frame rate of 25 fps, and an update rate 

of 25 fps for the horizontal and vertical rotation). 

A typical application of face detection is the estimation of the head pose, which consists of 3 degrees of freedom for 

the head position (x,y,z) and three degrees of freedom for the tilt of the head (rotation around the three axes). Additional 

degrees of freedom may be introduced by considering the direction of gaze. In our setting, we effectively reduced the 

number of degrees of freedom to match our application. We assume that the user is looking at the screen, hence we 



 

 
 

 

neglected gaze direction. We are also not interested in extracting the tilt of the head, because the viewing direction towards 

the screen is only marginally changed upon a change in head tilt. A similar approach for face detection was also used in a 

student project in 2018 in a course on machine vision19. 

The viewer application presented here was tested using 3D data from various settings, e.g. from architecture (e.g. the 

Pantheon), from surface rendered data of embryonic bone structure, from sculpture, from space, and from common CAD 

models. So far, we have not tested the implementation with data from arts and performances. 

We found that the viewer application presented does not provide a user experience close to a proper 3D VR/AR system, 

such as those presently applied in teaching or gaming. The reason for this is that the rendering of the 3D dataset on the 2D 

computer monitor lacks the possibility to include 3D depth information. However, for reasons laid out in the introduction, 

the system was designed to work without additional headgear, and can be easily implemented in different external rugged 

and dirt/water resistant devices. Presently, the system adjusts the rendered data for a single user. If multiple users are 

present in the acquired webcam images, the system finds the biggest face detected, and optimizes the display for this face. 

Theoretically, a system geometry with the webcam in the back of the user is also possible. However, the algorithms 

for face detection are much more robust than those for body part detection (back of the head), potentially also resulting in 

different specifications for the computation power required. An alternative to conventional 2D face detection would be the 

use of a 3D camera system, instead of a classical webcam. These 3D sensors have shown remarkably versatile use20 and 

are becoming integrated in more and more consumer multimedia products. However, presently standard PCs and laptops 

are not yet equipped with the technique. 

The zoom algorithm, which is based on extraction of the head size from the images, could be implemented in a way, 

which allows the user to virtually move right inside the objects. This could be an important asset for rendering medical 

tomographic data21–23 or for moving through buildings. Combining the head position and size algorithms with eye gaze 

tracking and/or with tracking of additional body parts (e.g. hands, fingers, arms) could render the approach into a more 

elaborate human interface device for intelligent human-machine interaction. In a second version of the viewer application, 

we have included position-sensitive areas which allow the user to perform actions when moving into these areas. The effect 

is similar to the mouse pointer hovering over a sensitive element on screen. For instance, when the user head is positioned 

at the far right in front of the computer screen, the CAD data is continuously rotated left as long as the user stays in this 

position. In a similar manner, different ranges for the parameters (head position and size) could be attributed with special 

tasks to be performed when the user moves in the corresponding parameter range. Such additional features could be used 

to e.g. tilt, pan, rotate the object if the user head is positioned over the corresponding sensitive area. Another approach to 

increase the angular range for head position extraction would be to add special optics to the webcam24, in order to increase 

the view angle of the webcam. 

In this paper, we proposed a robust, adaptive 3D rendering approach based on a quasi VR display keeping track of the 

user viewing direction and proximity to the displayed object. The approach could be shown to work for datasets differing 

by orders of magnitude in size. Unnecessary dead time due to the Viola Jones algorithm not being able to detect a person 

in the image, and the resulting delay of the display update, could be reduced by a large amount by either scaling down the 

image (i.e. using a low resolution webcam image of 160 x 120 pixels) or by specifying a minimum size of the face in the 

webcam image to the Viola Jones algorithm. The second approach can achieve a better accuracy when extracting the head 

position and size, without affecting performance of the algorithm.  

Overall, users have found that the system is very intuitive and easy to use, as it requires no direct interaction of the user 

with the software. The software does not present any form of options or settings to the user; these values are extracted in 

an initial calibration step, and the calibration data of a single experiment can potentially be used for all users of the system. 

The approach requires no additional hardware, it can be implemented in various architectures supporting virtually all 

presently available devices from all manufacturers. A demo version based on Matlab code is available for download25. 

Experiments show that the algorithm provides real-time user-position aware rendering of large 3D datasets at a frame rate 

of ca. 25 fps.
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